You need to
    use the integration by parts for `int_0^(2pi) t^2*sin(2t)dt`   such that:
`int udv = uv - int vdu`
`u = t^2 => du = 2tdt`
`dv = sin 2t=> v =(-cos 2t)/2`
`int_0^(2pi) t^2*sin(2t)dt =
    t^2*(-cos 2t)/2|_0^(2pi) + int_0^(2pi) t*cos 2t dt`
You need to use the
    integration by parts for `int_0^(2pi) t*cos 2t dt`  such that:
`u = t=> du
    = dt`
`dv = cos 2t=> v = (sin 2t)/2`
`int_0^(2pi) t*cos
    2t dt = t*(sin 2t)/2|_0^(2pi) - (1/2)int_0^(2pi) sin 2t dt`
`int_0^(2pi)
    t*cos 2t dt = t*(sin 2t)/2|_0^(2pi) +  (cos 2t)/4|_0^(2pi) `
`int_0^(2pi)
    t^2*sin(2t)dt = t^2*(-cos 2t)/2|_0^(2pi) + t*(sin 2t)/2|_0^(2pi) +  (cos 2t)/4|_0^(2pi)`
     
Using the fundamental theorem of calculus yields:
`int_0^(2pi) t^2*sin(2t)dt = (2pi)^2*(-cos 4pi)/2 + 0*(cos 0)/2  + 2pi*(sin 4pi)/2 -
    0 +  (cos 4pi)/4 - (cos 0)/4`
`int_0^(2pi) t^2*sin(2t)dt = -2(pi)^2 + 1/4 -
    1/4`
`int_0^(2pi) t^2*sin(2t)dt = -2(pi)^2 `
Hence, evaluating the integral, using  integration by parts,
    yields `int_0^(2pi) t^2*sin(2t)dt = -2(pi)^2.` 
 
No comments:
Post a Comment