Tuesday, January 22, 2019

how to integrate [log({sqrt(1-x)}+{sqrt(1+x)}] where lower limit is 0 and upper limit is 1



/>

/>


So:
/>
(sqrt(1-x)+sqrt(1+x))



"log"((2(1+sqrt(1-x^2)))^(1/2))



"log" (1+sqrt(1-x^2) ))


So:
/>
("log" (sqrt(1-x)+sqrt(1+x)) ) dx


int ("log"
2) dx + (1)/(2) int ("log" (1+sqrt(1-x^2))) dx
/>


The first integral is just

constant:


("log"
2) (1-0) = ("log" 2)/(2)


/>For the second
integral, we start with:


("log" (1+sqrt(1-x^2)))dx


We start with a trig
substitution:


theta
/>


"sin"^2
theta = "cos"^2 theta


"cos"
theta

If then

If

= (pi)/(2)x=1


/>And the integral
becomes:


(1+ "cos" theta)
"cos" theta) d theta

Now we use
integration by
parts:



theta)


theta
/>So:


"cos" theta) d
theta


theta

/>
"cos" theta) d theta
/>
"sin" theta - int (("sin" theta)(-"sin"
theta)/(1 +
"cos" theta)) d theta


"cos"
theta) "sin" theta + int (("sin"^2 theta)/(1 + "cos" theta))
d
theta



Now: />

theta)/(1+"cos" theta)


(("sin"^2
theta)(1-"cos" theta))/((1+"cos" theta)(1-"cos"

theta))



theta))/(1-"cos"^2 theta)


theta)(1-"cos"
theta))/("sin"^2
theta)

/>

Thus our
integral becomes:
/>
"sin" theta + int (1-"cos" theta) d
theta


"log" (1+ "cos" theta) "sin" theta + theta -
"sin" theta
|_0^(pi/2)



/>

(sqrt(1-x)+sqrt(1+x)) ) dx />

"log" (1+ "cos" theta) "sin"
theta + theta - "sin" theta
|_0^(pi/2) )


2)/(2) + (1)/(2)( "log" (1+ 0)
*1 + (pi)/(2) - 1 ) - (1)/(2)( "log" (1+ 1) *0
+ 0 - 0 )


("log" 2)/(2) + (1)/(2)( (pi)/(2) - 1
)




/>

No comments:

Post a Comment

How is Joe McCarthy related to the play The Crucible?

When we read its important to know about Senator Joseph McCarthy. Even though he is not a character in the play, his role in histor...