`f''(theta)=sin(theta)+cos(theta)`
`f'(theta)=int(sin(theta)+cos(theta))d(theta)`
`f'(theta)=-cos(theta)+sin(theta)+C_1`
Now let's find constant C_1 ,
given f'(0)=4
`f'(0)=4=-cos(0)+sin(0)+C_1`
`4=-1+0+C_1`
`C_1=5`
`:.f'(theta)=-cos(theta)+sin(theta)+5`
`f(theta)=int(-cos(theta)+sin(theta)+5)d(theta)`
`f(theta)=-sin(theta)-cos(theta)+5(theta)+C_2`
Now let's find
constant C_2 , given f(0)=3
`f(0)=3=-sin(0)-cos(0)+5(0)+C_2`
`3=-0-1+C_2`
`C_2=4`
`:.f(theta)=-sin(theta)-cos(theta)+5(theta)+4`
No comments:
Post a Comment