Note:- 1) If y = x^n
; then dy/dx = n*x^(n-1) ; where 'n' = real number
2) If y = u*v ; where both u & v are functions of 'x' ;
then
dy/dx = u*(dv/dx) +
v*(du/dx)
3) If y = k ;
where k = constant ; then dy/dx = 0
Now, the given
function is :-
(x^2) + xy - (y^2) = 4
Differentiating both sides w.r.t 'x' we get,
2x + x*(dy/dx) + y - 2y*(dy/dx) = 0
or, (2x+y) = (2y-x)*(dy/dx)
or, dy/dx
= (2x+y)/(2y-x)
No comments:
Post a Comment