We need to know
the following trigonometric function here.
`cos2x = cos^x-sin^2x`
`sin2x = 2sinxcosx`
`sin^2x+cos^2x = 1`
`(1+tanx)/(1-tanx)`
`=
(1+tanx)/(1-tanx)xx(1+tanx)/(1+tanx)`
`= (1+tanx)^2/(1-tan^2x)`
`= (1+sinx/cosx)^2/(1-(sin^2(x))/(cos^2(x)))`
`=
((cosx+sinx)^2/(cos^2x))/((cos^2x-sin^2x)/(cos^2x))`
`=
(cosx+sinx)^2/(cos^2x-sin^2x)`
`=
(cos^2x+sin^2x+2sinxcosx)/(cos2x)`
`= (1+sin2x)/(cos2x)`
`f(x) = (1+tanx)/(1-tanx) = (1+sin2x)/(cos2x)`
`f'(x)`
`=
(cos2x*2cos2x-(1+sin2x)(-2sin2x))/(cos^2(2x))`
`=
(2(cos^2(2x)+sin^2(2x)+sin2x))/(cos^2(2x))`
`= (2(1+sin2x))/(cos^2(2x))`
`= (2(1+sin2x))/(1-sin^2(2x))`
`=
(2(1+sin2x))/((1+sin2x)(1-sin2x))`
`= 2/(1-sin2x)`
So the derivative of f(x)
is `f'(x)= 2/(1-sin2x)`
No comments:
Post a Comment