Since the
degree of numerator is larger than degree of denominator, you need to use reminder theorem such
that:
`A(x) = B(x)C(x) + R(x)`
Notice that C(x) represents
the quotient and R(x) represents the reminder.
`x^3-4x^2+3x+1 = (x^2+4)(ax+b)
+ cx + d`
`x^3-4x^2+3x+1 = ax^3 + bx^2 + 4ax + 4b + cx + d`
`x^3-4x^2+3x+1 = ax^3 + bx^2 + x(4a+c) + 4b + d`
Equating the
coefficients of like powers yields:
`a = 1`
`b =
-4`
`4a + c = 3 => c = -1`
`4b + d = 1 => -16 + d =
1 => d = 17`
`x^3-4x^2+3x+1 = (x^2+4)(x-4) - x + 17`
Dividing both sides by `x^2 + 4` yields:
`(x^3-4x^2+3x+1)/(x^2+4) =
x - 4 + (- x + 17)/(x^2+4)`
Integrating both sides yields:
`int (x^3-4x^2+3x+1)/(x^2+4) dx= int x dx- 4 int dx+ int (- x +
17)/(x^2+4)dx`
`int (x^3-4x^2+3x+1)/(x^2+4) dx = x^2/2 - 4x - int x/(x^2+4)dx
+17 int 1/(x^2+4) dx`
You should use the following substitution to solve `int
x/(x^2+4) dx ` such that:
`x^2 + 4 = t => 2xdx = dt => xdx =
(dt)/2`
`int x/(x^2+4) dx= (1/2)int (dt)/t = (1/2)ln|t|+c`
`int (x^3-4x^2+3x+1)/(x^2+4) dx = x^2/2 - 4x - (1/2)ln(x^2+4) + 17/2*arctan (x/2) +
c`
Hence, evaluating the given integral yields `int
(x^3-4x^2+3x+1)/(x^2+4) dx = x^2/2 - 4x - (1/2)ln(x^2+4) + 17/2*arctan (x/2) + c.`
No comments:
Post a Comment